Course Outline
-
segmentLearnosity
-
segmentCKCode
-
ckcode-chapter-d1-intro-multivariate-models
list Items Test Book
Book
ckcode ⌲ chapter-d1-intro-multivariate-models
require(coursekata)
# This code saves the two models
Neighborhood_model <- lm(PriceK ~ Neighborhood, data = Smallville)
HomeSizeK_model <- lm(PriceK ~ HomeSizeK, data = Smallville)
# Generate the ANOVA tables for these two models
# This code saves the two models
Neighborhood_model <- lm(PriceK ~ Neighborhood, data = Smallville)
HomeSizeK_model <- lm(PriceK ~ HomeSizeK, data = Smallville)
# Generate the ANOVA tables for these two models
supernova(Neighborhood_model)
supernova(HomeSizeK_model)
ex() %>% {
check_function(., "supernova", index = 1) %>%
check_result() %>%
check_equal()
check_function(., "supernova", index = 1) %>%
check_result() %>%
check_equal()
}
CK Code: D1_Code_Intro_01
require(coursekata)
# Make a horizontal grid of scatterplots using Neighborhood
gf_point(PriceK~ HomeSizeK, data = Smallville)
# Make a horizontal grid of scatterplots using Neighborhood
gf_point(PriceK~ HomeSizeK, data = Smallville) %>%
gf_facet_grid(. ~ Neighborhood)
ex() %>% check_function("gf_facet_grid") %>% {
check_arg(., "object") %>% check_equal()
check_arg(., 2) %>% check_equal()
}
CK Code: D1_Code_Visualizing_01
require(coursekata)
# Add in the color argument
gf_point(PriceK ~ HomeSizeK, data = Smallville)
# Add in the color argument
gf_point(PriceK ~ HomeSizeK, data = Smallville, color = ~ Neighborhood)
ex() %>%
check_function("gf_point") %>%
check_arg("color") %>%
check_equal()
CK Code: D1_Code_Visualizing_02
require(coursekata)
# use lm() to find the best-fitting coefficients for our multivariate model
# use lm() to find the best-fitting coefficients for our multivariate model
lm(PriceK ~ Neighborhood + HomeSizeK, data = Smallville)
ex() %>%
check_function("lm") %>%
check_result() %>%
check_equal()
CK Code: D1_Code_Specifying_01
require(coursekata)
# save the multivariate model here
multi_model <-
# this puts the model predictions on the scatterplot
gf_point(PriceK ~ HomeSizeK, color = ~Neighborhood, data = Smallville) %>%
gf_point(predict(multi_model) ~ HomeSizeK, color = "black", shape = 2)
# save the multivariate model here
multi_model <- lm(PriceK~ Neighborhood + HomeSizeK, data = Smallville)
# this puts the model predictions on the scatterplot
gf_point(PriceK ~ HomeSizeK, color = ~Neighborhood, data = Smallville) %>%
gf_point(predict(multi_model) ~ HomeSizeK, color = "black", shape = 2)
ex() %>%
check_object("multi_model") %>%
check_equal()
CK Code: D1_Code_Predictions_01
require(coursekata)
# saves multivariate model
multi_model <- lm(PriceK ~ Neighborhood + HomeSizeK, data = Smallville)
# generate the ANOVA table
# saves multivariate model
multi_model <- lm(PriceK ~ Neighborhood + HomeSizeK, data = Smallville)
# generate the ANOVA table
supernova(multi_model)
ex() %>%
check_function("supernova") %>%
check_result() %>%
check_equal()
CK Code: D1_Code_Residuals_01
require(coursekata)
# use R to add the two numbers that should add up to SS Total
# use R to add the two numbers that should add up to SS Total
124403.028 + 104774.465
# accept anything between 220000 and 240000 just in case students round or something
eq_fun <- function(x, y) x > 220000 && x < 240000
ex() %>% check_or(.,
check_operator(., "+") %>%
check_result() %>%
check_equal(eq_fun = eq_fun),
override_solution(., "sum(124403.028, 104774.465)") %>%
check_function("sum") %>%
check_result() %>%
check_equal(eq_fun = eq_fun)
)
CK Code: D1_Code_Residuals_02
require(coursekata)
# modify this to generate an F from the empty model of the DGP
f(PriceK ~ Neighborhood + HomeSizeK, data = Smallville)
# modify this to generate an F from the empty model of the DGP
f(shuffle(PriceK) ~ Neighborhood + HomeSizeK, data = Smallville)
ex() %>%
check_function("f") %>%
check_arg("object") %>%
check_equal()
CK Code: D1_Code_Logic_01
require(coursekata)
# add do() to generate a sampling distribution of 1000 Fs from the empty model of the DGP
sdof <- f(shuffle(PriceK) ~ Neighborhood + HomeSizeK, data = Smallville)
# this will depict the sdof in a histogram
gf_histogram(~ f, data = sdof)
# add do() to generate a sampling distribution of 1000 Fs from the empty model of the DGP
sdof <- do(1000) * f(shuffle(PriceK)~ Neighborhood + HomeSizeK, data = Smallville)
# this will depict the sdof in a histogram
gf_histogram(~ f, data = sdof)
ex() %>% {
check_function(., "do") %>%
check_arg("object") %>%
check_equal()
check_operator(., "*")
}
CK Code: D1_Code_Logic_02
require(coursekata)
# this calculates sample_f
sample_f <- f(PriceK ~ Neighborhood + HomeSizeK, data = Smallville)
# this generates a sampling distribution of fs
sdof <- do(1000) * f(shuffle(PriceK) ~ Neighborhood + HomeSizeK, data = Smallville)
# use tally to calculate p-value from the sdof
# remember to set the format as proportion
# this calculates sample_f
sample_f <- f(PriceK ~ Neighborhood + HomeSizeK, data = Smallville)
# this generates a sampling distribution of fs
sdof <- do(1000) * f(shuffle(PriceK) ~ Neighborhood + HomeSizeK, data = Smallville)
# use tally to calculate p-value from the sdof
# remember to set the format as proportion
tally(~ f > sample_f, data = sdof, format = "proportion")
ex() %>%
check_function("tally") %>%
check_result() %>%
check_equal()
CK Code: D1_Code_DistF_01
require(coursekata)
# this saves the multivariate model
multi_model <- lm(PriceK ~ Neighborhood + HomeSizeK, data = Smallville)
# write one line of code that will calculate
# confidence intervals for all parameters
# this saves the multivariate model
multi_model <- lm(PriceK ~ Neighborhood + HomeSizeK, data = Smallville)
# write one line of code that will calculate
# confidence intervals for all parameters
confint(multi_model)
ex() %>%
check_function("confint") %>%
check_result() %>%
check_equal()
CK Code: D1_Code_DistF_02