Course Outline

list Items Test Book

Book
  • Items Test Book

ckcode ⌲ chapter-b1-simple-model

require(coursekata) # Modify this line to save the numbers to outcome outcome <- c() # This will give you the favstats for outcome favstats(outcome) outcome <- c(5, 5, 5, 10, 20) favstats(outcome) ex() %>% { check_object(., "outcome") %>% check_equal() check_function(., "favstats") %>% check_result() %>% check_equal() }
CK Code: B1_Code_Median_01
require(coursekata) # modify this code to make a histogram of GradePredict # the second line adds more tick marks to the x-axis gf_histogram(~ , data = Fingers, color = "forestgreen") + scale_x_continuous(breaks = seq(2.0, 4.0, by = 0.1)) # modify this code to get the favstats for GradePredict favstats(~ GradePredict, data = ) # modify this code to make a histogram of GradePredict # the second line adds more tick marks to the x-axis gf_histogram(~ GradePredict, data = Fingers, color = "forestgreen") + scale_x_continuous(breaks = seq(2.0, 4.0, by = 0.1)) # modify this code to get the favstats for GradePredict favstats(~ GradePredict, data = Fingers) ex() %>% { check_or(., check_function(., "gf_histogram") %>% { check_arg(., "object") %>% check_equal() check_arg(., "data") %>% check_equal() }, override_solution(., "gf_histogram(Fingers, ~ GradePredict)") %>% check_function("gf_histogram") %>% { check_arg(., "object") %>% check_equal() check_arg(., "gformula") %>% check_equal() }, override_solution(., "gf_histogram(~ Fingers$GradePredict)") %>% check_function("gf_histogram") %>% check_arg(., "object") %>% check_equal() ) check_function(., "favstats") %>% check_result() %>% check_equal() }
CK Code: B1_Code_Median_02
require(coursekata) # modify this code to make a histogram of Thumb gf_histogram() # get the favstats for Thumb # modify this code to make a histogram of Thumb gf_histogram(~ Thumb, data = Fingers) # get the favstats for Thumb favstats(~ Thumb, data = Fingers) ex() %>% { check_or(., check_function(., "gf_histogram") %>% { check_arg(., "object") %>% check_equal() check_arg(., "data") %>% check_equal() }, override_solution(., "gf_histogram(Fingers, ~ Thumb)") %>% check_function("gf_histogram") %>% { check_arg(., "object") %>% check_equal() check_arg(., "gformula") %>% check_equal() }, override_solution(., "gf_histogram(~ Fingers$Thumb)") %>% check_function("gf_histogram") %>% check_arg(., "object") %>% check_equal() ) check_function(., "favstats") %>% check_result() %>% check_equal() }
CK Code: B1_Code_Median_03
require(coursekata) # make a histogram of Age in the MindsetMatters data frame # set the fill = "red" # get the favstats for Age # make a histogram of Age in the MindsetMatters data frame # set the fill = "red" gf_histogram(~ Age, data = MindsetMatters, fill = "red") # get the favstats for Age favstats(~ Age, data = MindsetMatters) ex() %>% { check_or(., check_function(., "gf_histogram") %>% { check_arg(., "object") %>% check_equal() check_arg(., "data") %>% check_equal() }, override_solution(., "gf_histogram(MindsetMatters, ~ Age)") %>% check_function("gf_histogram") %>% { check_arg(., "object") %>% check_equal() check_arg(., "gformula") %>% check_equal() }, override_solution(., "gf_histogram(~ MindsetMatters$Age)") %>% check_function("gf_histogram") %>% check_arg(., "object") %>% check_equal() ) check_function(., "gf_histogram") %>% check_arg("fill") %>% check_equal() check_function(., "favstats") %>% check_result() %>% check_equal() }
CK Code: B1_Code_Median_04
require(coursekata) outcome <- c(5, 5, 5, 10, 20) # Modify this code to draw a vline representing the median in "purple" gf_histogram(~outcome) %>% gf_vline(xintercept = 9, color = "blue") # Modify this code to draw a vline representing the median in "purple" gf_histogram(~outcome) %>% gf_vline(xintercept = 5, color = "purple") ex() %>% { check_function(., "gf_histogram") %>% check_arg("object") %>% check_equal() check_function(., "gf_vline") %>% { check_arg(., "xintercept") %>% check_equal() check_arg(., "color") %>% check_equal() } }
CK Code: B1_Code_Median_05
require(coursekata) # modify this to fit the empty model of Thumb empty_model <- # print out the model estimates empty_model <- lm(Thumb ~ NULL, data = Fingers) empty_model ex() %>% { check_object(., "empty_model") %>% check_equal() }
CK Code: B1_Code_Empty_01
require(coursekata) empty_model <- lm(Thumb ~ NULL, data = Fingers) # saves the best-fitting empty model empty_model <- lm(Thumb ~ NULL, data = Fingers) # add gf_model to this scatterplot gf_point(Thumb ~ Height, data = Fingers) # add gf_model to this jitter plot gf_jitter(Thumb ~ Sex, data = Fingers, width = .1) # saves the best-fitting empty model empty_model <- lm(Thumb ~ NULL, data = Fingers) # add gf_model to this scatterplot gf_point(Thumb ~ Height, data = Fingers) %>% gf_model(empty_model) # add gf_model to this jitter plot gf_jitter(Thumb ~ Sex, data = Fingers, width = .1) %>% gf_model(empty_model) ex() %>% { check_function(., "gf_model", index = 1) %>% check_arg("object") %>% check_equal() check_or(., check_function(., "gf_model", index = 1) %>% check_arg("model") %>% check_equal(), override_solution(., "gf_point(Thumb ~ Height, data = Fingers) %>% gf_model(Thumb ~ NULL)") %>% check_function("gf_model", index = 1) %>% check_arg("model") %>% check_equal() ) check_function(., "gf_model", index = 2) %>% check_arg("object") %>% check_equal() check_or(., check_function(., "gf_model", index = 2) %>% check_arg("model") %>% check_equal(), override_solution(., "gf_model(empty_model); gf_point(Thumb ~ Height, data = Fingers) %>% gf_model(Thumb ~ NULL)") %>% check_function("gf_model", index = 2) %>% check_arg("model") %>% check_equal() ) }
CK Code: B1_Code_Empty_02
require(coursekata) # saves the empty model empty_model <- lm(Thumb ~ NULL, data = Fingers) # write code to generate predictions of the empty model empty_model <- lm(Thumb ~ NULL, data = Fingers) predict(empty_model) ex() %>% check_object("empty_model") %>% check_equal()
CK Code: B1_Code_Predictions_01
require(coursekata) # this saves the empty_model empty_model <- lm(Thumb ~ NULL, data = Fingers) # modify this to save the predictions from the empty_model in a new variable Fingers$Predict <- # prints out selected variables from Fingers head(select(Fingers, Thumb, Predict), 10) # this makes a scatterplot of Thumb by Height and overlays the empty model's predictions as open blue circles gf_point(Thumb ~ Height, data = Fingers, width = .1) %>% gf_point(Predict ~ Height, color = "blue", shape = 1, height = 0) # this saves the empty_model empty_model <- lm(Thumb ~ NULL, data = Fingers) # modify this to save the predictions from the empty_model in a new variable Fingers$Predict <- predict(empty_model) # prints out selected variables from Fingers head(select(Fingers, Thumb, Predict), 10) # this makes a scatterplot of Thumb by Height and overlays the empty model's predictions as open blue circles gf_point(Thumb ~ Height, data = Fingers, alpha = .2) %>% gf_point(Predict ~ Height, color = "blue", shape = 1) ex() %>% check_object("Fingers") %>% check_column("Predict") %>% check_equal()
CK Code: B1_Code_Predictions_02
require(coursekata) Fingers$TinySet <- c(1,1,1,0,0,0,1,0,0,1, rep(0,147)) Fingers$TinySet[142] <- 1 Fingers <- arrange(arrange(Fingers, Height), desc(TinySet)) empty_model <- lm(Thumb ~ NULL, data = Fingers) Fingers <- Fingers %>% mutate( Predict = predict(empty_model), Resid = Thumb - Predict ) # modify this to save the residuals from the empty_model Fingers$Resid <- # this prints selected variables from Fingers select(Fingers, Thumb, Predict, Resid) Fingers$Resid <- Fingers$Thumb - Fingers$Predict ex() %>% check_object("Fingers") %>% check_column("Resid") %>% check_equal()
CK Code: B1_Code_Thinking_01
require(coursekata) Fingers$TinySet <- c(1,1,1,0,0,0,1,0,0,1, rep(0,147)) Fingers$TinySet[142] <- 1 Fingers <- arrange(arrange(Fingers, Height), desc(TinySet)) empty_model <- lm(Thumb ~ NULL, data = Fingers) Fingers <- Fingers %>% mutate( Predict = predict(empty_model), Resid = Thumb - Predict ) # calculate the residuals from empty_model the easy way # and save them in the Fingers data frame Fingers$EasyResid <- # this prints select variables from Fingers head(select(Fingers, Thumb, Predict, Resid, EasyResid)) Fingers$EasyResid <- resid(empty_model) Fingers ex() %>% check_object("Fingers") %>% check_column("EasyResid") %>% check_equal()
CK Code: Code_Thinking_02
require(coursekata) empty_model <- lm(Thumb ~ NULL, data = Fingers) Fingers <- Fingers %>% mutate( Predict = predict(empty_model), Resid = resid(empty_model) ) # assume Fingers data frame already has the variable Resid saved in it sum(Fingers$Resid) ex() %>% { check_output_expr(., "sum(Fingers$Resid)") }
CK Code: Code_Thinking_03
require(coursekata) # run your code here
CK Code: B1_Code_Review2_01
require(coursekata) # run your code here
CK Code: B1_Code_Review2_02
require(coursekata) # run your code here
CK Code: B1_Code_Review2_03
require(coursekata) # run your code here
CK Code: B1_Code_Review2_04
require(coursekata) # run your code here
CK Code: B1_Code_Review2_05
require(coursekata) # run your code here
CK Code: B1_Code_Review2_06
require(coursekata) # run your code here
CK Code: B1_Code_Review2_07

Responses