Course Outline
-
segmentLearnosity
-
segmentCKCode
-
ckcode-chapter-a3-examining-distributions
list Items Test Book
Book
ckcode ⌲ chapter-a3-examining-distributions
require(coursekata)
# try running this code
gf_histogram(~Thumb, data = Fingers)
# try running this code
gf_histogram(~Thumb, data = Fingers)
ex() %>%
check_function("gf_histogram") %>% {
check_arg(., "object", arg_not_specified_msg = "Make sure to keep ~Thumb") %>% check_equal()
check_arg(., "data", arg_not_specified_msg = "Make sure to specify data") %>% check_equal()
}
CK Code: ch3-1
require(coursekata)
# Modify this code to play around with labeling the y-axis
gf_histogram(~ Thumb, data = Fingers) %>%
gf_labs(x = "Thumb length (mm)", y = )
gf_histogram(~ Thumb, data = Fingers) %>%
gf_labs(x = "Thumb length (mm)", y = "Your Label")
ex() %>% {
check_function(., "gf_labs") %>% check_arg("x") %>% check_equal(eval = FALSE)
check_function(., "gf_labs") %>% check_arg("y")
check_function(., "gf_histogram") %>% check_arg("object") %>% check_equal()
check_function(., "gf_histogram") %>% check_arg("data") %>% check_equal()
}
CK Code: ch3-2
require(coursekata)
# This sets up our tiny data frame with our outcome variable
outcome <- c(1, 2, 3, 4, 5)
tiny_data <- data.frame(outcome)
# Write code to create a histogram of outcome
outcome <- c(1, 2, 3, 4, 5)
tiny_data <- data.frame(outcome)
gf_histogram(~outcome, data = tiny_data, fill = "aquamarine", color = "gray")
ex() %>% {
check_object(., "outcome", undefined_msg = "Make sure to not remove `outcome`") %>% check_equal()
check_object(., "tiny_data") %>% check_column("outcome") %>% check_equal(incorrect_msg = "Make sure to not alter `tiny_data`")
check_function(., "gf_histogram") %>% {
check_arg(., "fill", arg_not_specified_msg = "Remember to use `fill =` with your own choice of color")
check_arg(., "color", arg_not_specified_msg = "Remember to use `color =` with your own choice of color")
}
check_or(.,
check_function(., "gf_histogram") %>% {
check_arg(., "object") %>% check_equal(eval = FALSE, incorrect_msg = "Make sure you specify `~outcome` as the first argument.")
check_arg(., "data") %>% check_equal(incorrect_msg = "Did you set `data = tiny_data`?")
},
override_solution_code(., '{
outcome <- c(1, 2, 3, 4, 5)
tiny_data <- data.frame(outcome)
gf_histogram(~tiny_data, fill = "aquamarine", color = "gray")
}') %>%
check_function("gf_histogram") %>%
check_arg("object") %>%
check_equal(eval = FALSE)
)
}
CK Code: ch3-3
require(coursekata)
# This is the same code as before but we added in another outcome value, 3.2
outcome <- c(1, 2, 3, 4, 5, 3.2)
tiny_data <- data.frame(outcome)
# This makes a histogram with 5 bins
gf_histogram(~ outcome, data = tiny_data, fill = "aquamarine", color = "gray", bins = 5)
outcome <- c(1, 2, 3, 4, 5, 3.2)
tiny_data <- data.frame(outcome)
gf_histogram(~ outcome, data = tiny_data, fill = "aquamarine", color = "gray", bins = 5)
ex() %>% check_object("outcome", undefined_msg = "Make sure not to delete 'outcome'") %>% check_equal(incorrect_msg = "Make sure not to change the content of 'outcome'")
ex() %>% check_object("tiny_data", undefined_msg = "Make sure not to delete 'tiny_data'") %>% check_equal()
ex() %>% check_function("gf_histogram") %>% {
check_arg(., "object") %>% check_equal()
check_arg(., "data") %>% check_equal()
}
success_msg("You're doing great!")
CK Code: ch3-4
require(coursekata)
# add 3.7 to the outcome values, then run this code
outcome <- c(1, 2, 3, 4, 5, 3.2)
tiny_data <- data.frame(outcome)
# this makes a histogram with 5 bins
gf_histogram(~ outcome, data = tiny_data, fill = "aquamarine", color = "gray", bins = 5)
# add 3.7 to the outcome values, then run this code
outcome <- c(1, 2, 3, 4, 5, 3.2, 3.7)
tiny_data <- data.frame(outcome)
# this makes a histogram with 5 bins
gf_histogram(~ outcome, data = tiny_data, fill = "aquamarine", color = "gray", bins = 5)
inc_msg = "Don't alter the other code in this exercise -- only the contents of `outcome`."
ex() %>% {
check_object(., "outcome") %>% check_equal(incorrect_msg = "Did you add 3.7 to the outcome vector?")
check_object(., "tiny_data") %>% check_equal(incorrect_msg = inc_msg)
check_function(., "gf_histogram")
}
CK Code: ch3-5
require(coursekata)
# adjust the number of bins to 50
gf_histogram(~ Thumb, data = Fingers, bins = )
# adjust the number of bins to 5
gf_histogram(~ Thumb, data = Fingers)
# adjust the bin width to 3
gf_histogram(~ Thumb, data = Fingers, binwidth = )
# adjust the bin width to 10
gf_histogram(~ Thumb, data = Fingers)
# adjust the number of bins to 50
gf_histogram(~ Thumb, data = Fingers, bins = 50)
# adjust the number of bins to 5
gf_histogram(~ Thumb, data = Fingers, bins = 5)
# adjust the bin width to 3
gf_histogram(~ Thumb, data = Fingers, binwidth = 3)
# adjust the bin width to 10
gf_histogram(~ Thumb, data = Fingers, binwidth = 10)
ex() %>% {
check_function(., "gf_histogram", index = 1) %>% check_arg("bins") %>% check_equal(incorrect_msg = "Did you set the number of `bins` to 50?")
check_function(., "gf_histogram", index = 2) %>% check_arg("bins", arg_not_specified_msg = "Did you set the number of `bins` to 5?") %>% check_equal(incorrect_msg = "Did you set the number of `bins` to 5?")
check_function(., "gf_histogram", index = 3) %>% check_arg("binwidth") %>% check_equal(incorrect_msg = "Did you set the `binwidth` to 3?")
check_function(., "gf_histogram", index = 4) %>% check_arg("binwidth", arg_not_specified_msg = "Did you set the `binwidth` to 10?") %>% check_equal(incorrect_msg = "Did you set the `binwidth` to 10?")
}
CK Code: ch3-6
require(coursekata)
# This will create a relative frequency histogram of Age
gf_dhistogram(~ Age, data = MindsetMatters, fill = "coral2")
# Add code below to create a frequency histogram of Age
gf_dhistogram(~ Age, data = MindsetMatters, fill = "coral2", bins = 20)
gf_histogram(~ Age, data = MindsetMatters)
ex() %>% check_function(., "gf_histogram") %>% {
check_arg(., "object") %>% check_equal()
check_arg(., "data") %>% check_equal()
}
CK Code: ch3-7
require(coursekata)
# make a density histogram of Thumb in the Fingers data frame
# make a density histogram of Thumb in the Fingers data frame
gf_dhistogram(~ Thumb, data = Fingers)
ex() %>% check_or(
check_function(., "gf_dhistogram") %>% {
check_arg(., "object") %>% check_equal()
check_arg(., "data") %>% check_equal()
},
override_solution(., "gf_dhistogram(Fingers, ~ Thumb)") %>%
check_function("gf_dhistogram") %>% {
check_arg(., "object") %>% check_equal()
check_arg(., "gformula") %>% check_equal()
},
override_solution(., "gf_dhistogram(~Fingers$Thumb)") %>%
check_function("gf_dhistogram") %>%
check_arg("object") %>% check_equal()
)
CK Code: ch3-8
require(coursekata)
# This creates our model population
model_pop <- 1:6
# Write code to create a relative frequency histogram of our model population.
# Remember to include bins as an argument.
# This creates our model population
model_pop <- 1:6
# Write code to create a relative frequency histogram of our model population.
# Remember to include bins as an argument.
# gf_dhistogram(~ model_pop, color = "black", bins = 6)
ex() %>% {
check_object(., "model_pop") %>% check_equal()
override_solution_code(.,
'gf_dhistogram(~ model_pop, color = "black", bins = 6)'
) %>%
check_function(., "gf_dhistogram") %>% {
check_arg(., "object") %>% check_equal()
check_arg(., "bins") %>% check_equal()
}
}
CK Code: ch3-9
require(coursekata);
allow_solution_error()
model_pop <- 1:6
# This samples the same way 12 times
resample(model_pop, 12)
# Will this accomplish the same thing?
# Do not change the code --- just submit it
sample(model_pop, 12)
model_pop <- 1:6
# This samples the same way 12 times
resample(model_pop, 12)
# Will this accomplish the same thing?
# Do not change the code --- just submit it
sample(model_pop, 12)
success_msg("This code is supposed to throw an error. You can read it in the Console tab.")
CK Code: ch3-10
require(coursekata)
set.seed(4)
model_pop <- 1:6
sample1 <- resample(model_pop, 12)
# Write code to create a relative frequency histogram
# Remember to put in bins as an argument
# Don't use any custom coloring
model_pop <- 1:6
sample1 <- resample(model_pop, 12)
# you have to uncomment this line for it to work
# gf_dhistogram(~ sample1, bins = 6)
ex() %>% {
override_solution_code(.,
'model_pop <- 1:6; sample1 <- resample(model_pop, 12); gf_dhistogram(~ sample1, bins = 6)'
) %>% {
check_object(., "sample1") %>% check_equal()
check_function(., "gf_dhistogram") %>% {
check_arg(., "bins")
check_arg(., "object") %>% check_equal(eval = FALSE)
}
}
}
CK Code: ch3-11
require(coursekata)
set.seed(5)
model_pop <- 1:6
# Modify this code from 12 dice rolls to 24 dice rolls
sample2 <- resample(model_pop, 12)
# This will create a density histogram
gf_dhistogram(~ sample2, color = "darkgray", fill = "springgreen", bins = 6)
model_pop <- 1:6
# Modify this code from 12 dice rolls to 24 dice rolls
sample2 <- resample(model_pop, 24)
# This will create a density histogram (you have to uncomment the line for it to work)
# gf_dhistogram(~ sample2, color = "darkgray", fill = "springgreen", bins = 6)
ex() %>% check_object("sample2") %>% check_equal()
CK Code: ch3-12
require(coursekata)
set.seed(7)
model_pop <- 1:6
# create samples #3, #4, #5 of 24 dice rolls
sample3 <-
sample4 <-
sample5 <-
# this will create a density histogram of your sample3
# add onto it to include a density plot
gf_dhistogram(~ sample3, color = "darkgray", fill = "springgreen", bins = 6)
# create density histograms of sample4 and sample5 with density plots
model_pop <- 1:6
# create samples
sample3 <- resample(model_pop, 24)
sample4 <- resample(model_pop, 24)
sample5 <- resample(model_pop, 24)
# this will create a density histogram of your sample3
# add onto it to include a density plot
# gf_dhistogram(~ sample3, color = "darkgray", fill = "springgreen", bins = 6) %>%
# gf_density()
# create density histograms of sample4 and sample5 with density plots
# gf_dhistogram(~ sample4, color = "darkgray", fill = "springgreen", bins = 6) %>%
# gf_density()
# gf_dhistogram(~ sample5, color = "darkgray", fill = "springgreen", bins = 6) %>%
# gf_density()
ex() %>% override_solution_code('{
model_pop <- 1:6
sample3 <- resample(model_pop, 24)
sample4 <- resample(model_pop, 24)
sample5 <- resample(model_pop, 24)
gf_dhistogram(~ sample3, color = "darkgray", fill = "springgreen", bins = 6) %>%
gf_density()
gf_dhistogram(~ sample4, color = "darkgray", fill = "springgreen", bins = 6) %>%
gf_density()
gf_dhistogram(~ sample5, color = "darkgray", fill = "springgreen", bins = 6) %>%
gf_density();
}') %>%
{
check_object(., "sample3") %>% check_equal()
check_object(., "sample4") %>% check_equal()
check_object(., "sample5") %>% check_equal()
check_function(., "gf_dhistogram", index = 1) %>%
check_arg("object") %>% check_equal(eval = FALSE)
check_function(., "gf_dhistogram", index = 2) %>%
check_arg("object") %>% check_equal(eval = FALSE)
check_function(., "gf_dhistogram", index = 3) %>%
check_arg("object") %>% check_equal(eval = FALSE)
check_function(., "gf_density", index = 1)
check_function(., "gf_density", index = 2)
check_function(., "gf_density", index = 3)
}
CK Code: ch3-13
require(coursekata)
set.seed(7)
model_pop <- 1:6
# create a sample with 1000 rolls of a die
large_sample <-
# this will create a density histogram of your large_sample
gf_dhistogram(~ large_sample, color = "darkgray", fill = "springgreen", bins = 6)
model_pop <- 1:6
# create a sample with 1000 rolls of a die
large_sample <- resample(model_pop, 1000)
# this will create a density histogram of your large_sample
# gf_dhistogram(~ large_sample, color = "darkgray", fill = "springgreen", bins = 6)
ex() %>% override_solution_code('{
model_pop <- 1:6
# create a sample with 1000 rolls of a die
large_sample <- resample(model_pop, 1000)
# this will create a density histogram of your largesample
gf_dhistogram(~ large_sample, color="darkgray", fill="springgreen", bins=6)
}') %>% {
check_object(., "large_sample") %>% check_equal()
check_function(., "gf_dhistogram") %>%
check_arg("object") %>%
check_equal(eval = FALSE)
}
CK Code: ch3-14
require(coursekata)
set.seed(10)
model_pop <- 1:6
w_pop <- c(rep(1,5), 2, rep(3,10), rep(4,10), 5, rep(6,5))
# Create a sample that draws 24 times from w_pop
small_sample <-
# This will create a density histogram of your small_sample
gf_dhistogram(~ small_sample, color = "darkgray", fill = "mistyrose", bins = 6)
# Create a sample that draws 24 times from w_pop
small_sample <- resample(w_pop, 24)
# This will create a density histogram of your small_sample
# gf_dhistogram(~ small_sample, color = "darkgray", fill = "mistyrose", bins = 6)
ex() %>% override_solution_code('{
# Create a sample that draws 24 times from w_pop
small_sample <- resample(w_pop, 24)
# This will create a density histogram of your small_sample
gf_dhistogram(~ small_sample, color = "darkgray", fill = "mistyrose", bins = 6)
}') %>% {
check_object(., "small_sample") %>% check_equal()
check_function(., "gf_dhistogram") %>%
check_arg("object") %>%
check_equal()
}
CK Code: ch3-15
require(coursekata)
set.seed(7)
model_pop <- 1:6
w_pop <- c(rep(1,5), 2, rep(3,10), rep(4,10), 5, rep(6,5))
# create a sample that draws 1000 times from w_pop
large_sample <-
# this will create a density histogram of your large_sample
gf_dhistogram(~ large_sample, color = "darkgray", fill = "mistyrose", bins = 6)
# create a sample that draws 1000 times from w_pop
large_sample <- resample(w_pop, 1000)
# this will create a density histogram of your large_sample
# gf_dhistogram(~ large_sample, color = "darkgray", fill = "mistyrose", bins = 6)
ex() %>% override_solution_code('{
# create a sample that draws 1000 times from w_pop
large_sample <- resample(w_pop, 1000)
# this will create a density histogram of your large_sample
gf_dhistogram(~ large_sample, color = "darkgray", fill = "mistyrose", bins = 6)
}') %>% {
check_object(., "large_sample") %>% check_equal()
check_function(., "gf_dhistogram") %>%
check_arg("object") %>%
check_equal()
}
CK Code: ch3-16
require(coursekata)
# Write code to sort Wt from lowest to highest
# Solution 1
arrange(MindsetMatters, Wt)
# Solution 2
sort(MindsetMatters$Wt)
3
ex() %>% check_or(
check_function(., "arrange", not_called_msg = "If you were trying to use `sort`, that's acceptable but your code must have resulted in an error.") %>% check_result() %>% check_equal(),
check_function(., "sort") %>% check_result() %>% check_equal()
)
CK Code: ch3-17
require(coursekata)
HappyPlanetIndex$Region <- recode(
HappyPlanetIndex$Region,
'1'="Latin America",
'2'="Western Nations",
'3'="Middle East and North Africa",
'4'="Sub-Saharan Africa",
'5'="South Asia",
'6'="East Asia",
'7'="Former Communist Countries"
)
# Modify the code to get favstats for Population of countries in HappyPlanetIndex
favstats()
favstats(~ Population, data = HappyPlanetIndex)
ex() %>% check_function("favstats") %>% check_result() %>% check_equal()
CK Code: ch3-18
require(coursekata)
HappyPlanetIndex$Region <- recode(
HappyPlanetIndex$Region,
'1'="Latin America",
'2'="Western Nations",
'3'="Middle East and North Africa",
'4'="Sub-Saharan Africa",
'5'="South Asia",
'6'="East Asia",
'7'="Former Communist Countries"
)
# make a histogram of Population from HappyPlanetIndex using gf_histogram
# make a histogram of Population from HappyPlanetIndex using gf_histogram
gf_histogram(~ Population, data = HappyPlanetIndex)
ex() %>% check_or(
check_function(., "gf_histogram") %>% {
check_arg(., "object") %>% check_equal()
check_arg(., "data") %>% check_equal()
},
override_solution(., "gf_histogram(HappyPlanetIndex, ~ Population)") %>%
check_function("gf_histogram") %>% {
check_arg(., "object") %>% check_equal()
check_arg(., "gformula") %>% check_equal()
},
override_solution(., "gf_histogram(~HappyPlanetIndex$Population)") %>%
check_function("gf_histogram") %>% {
check_arg(., "object") %>% check_equal()
},
override_solution(., "gf_histogram(data = HappyPlanetIndex, gformula = ~ Population)") %>%
check_function("gf_histogram") %>% {
check_arg(., "data") %>% check_equal()
check_arg(., "gformula") %>% check_equal()
}
)
CK Code: ch3-19
require(coursekata)
# Based on the numbers from the favstats results above, use R as a calculator to find the range of Wt in MindsetMatters
# Based on the numbers from the favstats results above, use R as a calculator to find the range of Wt in MindsetMatters
196 - 90
ex() %>% check_output_expr("196 - 90")
CK Code: ch3-20
require(coursekata)
HappyPlanetIndex$Region <- recode(
HappyPlanetIndex$Region,
'1'="Latin America",
'2'="Western Nations",
'3'="Middle East and North Africa",
'4'="Sub-Saharan Africa",
'5'="South Asia",
'6'="East Asia",
'7'="Former Communist Countries"
)
# Use R as a calculator to find the IQR of Population from the HappyPlanetIndex data set
# Use R as a calculator to find the IQR of Population from the HappyPlanetIndex data set
31.225 - 4.455
ex() %>% check_output_expr("31.225 - 4.455")
CK Code: ch3-21
require(coursekata)
HappyPlanetIndex$Region <- recode(
HappyPlanetIndex$Region,
'1'="Latin America",
'2'="Western Nations",
'3'="Middle East and North Africa",
'4'="Sub-Saharan Africa",
'5'="South Asia",
'6'="East Asia",
'7'="Former Communist Countries"
)
# Modify this code to create a boxplot of Population from HappyPlanetIndex
gf_boxplot(Wt ~ 1, data = MindsetMatters)
# Modify this code to create a boxplot of Population from HappyPlanetIndex
gf_boxplot(Population ~ 1, data = HappyPlanetIndex)
ex() %>% check_function("gf_boxplot") %>% {
check_arg(., "object") %>% check_equal()
check_arg(., "data") %>% check_equal()
}
CK Code: ch3-22
require(coursekata)
HappyPlanetIndex$Region <- recode(
HappyPlanetIndex$Region,
'1'="Latin America",
'2'="Western Nations",
'3'="Middle East and North Africa",
'4'="Sub-Saharan Africa",
'5'="South Asia",
'6'="East Asia",
'7'="Former Communist Countries"
)
# this calculates the Q3 + 1.5*IQR
upper_boundary <- 31.225 + 1.5*(31.225-4.455)
# modify this code to filter in only countries with population sizes less than the upper_boundary
SmallerCountries <-
# this makes a histogram of the smaller countries' populations
gf_histogram(~ Population, data = SmallerCountries, fill = "slateblue4") %>%
gf_labs(x = "Population (in millions)", title = "Population of Countries (Excludes Outliers)")
upper_boundary <- 31.225 + 1.5*(31.225-4.455)
SmallerCountries <- filter(HappyPlanetIndex, Population < upper_boundary)
gf_histogram(~ Population, data = SmallerCountries, fill = "slateblue4") %>%
gf_labs(x = "Population (in millions)", title = "Population of Countries (Excludes Outliers)")
ex() %>% {
check_function(., "filter") %>% {
check_arg(., ".data") %>% check_equal(incorrect_msg="Don't forget to filter in HappyPlanetIndex")
check_arg(., "...") %>% check_equal(incorrect_msg="Did you use `Population < upper_boundary` as the second argument?")
check_result(.) %>% check_equal()
}
check_object(., "SmallerCountries") %>% check_equal
check_function(., "gf_histogram") %>% {
check_arg(., "object") %>% check_equal()
check_arg(., "data") %>% check_equal()
}
}
CK Code: ch3-23
require(coursekata)
HappyPlanetIndex$Region <- recode(
HappyPlanetIndex$Region,
'1'="Latin America",
'2'="Western Nations",
'3'="Middle East and North Africa",
'4'="Sub-Saharan Africa",
'5'="South Asia",
'6'="East Asia",
'7'="Former Communist Countries"
)
pop_stats <- favstats(~ Population, data = HappyPlanetIndex)
SmallerCountries <- filter(HappyPlanetIndex, Population < (pop_stats$Q3 + 1.5*(pop_stats$Q3 - pop_stats$Q1)))
# Make a boxplot of Population from the SmallerCountries
gf_boxplot(Population ~ 1, data = SmallerCountries)
# Make a boxplot of Population from the SmallerCountries
gf_boxplot(Population ~ 1, data = SmallerCountries)
ex() %>% check_function("gf_boxplot") %>% {
check_arg(., "object") %>% check_equal()
check_arg(., "data") %>% check_equal()
}
CK Code: ch3-24
require(coursekata)
# Create a bar graph of RaceEthnic in the Fingers data frame. Use the gf_bar() function
# Create a bar graph of RaceEthnic in the Fingers data frame. Use the gf_bar() function
gf_bar(~ RaceEthnic, data = Fingers)
ex() %>% check_function("gf_bar") %>% {
check_arg(., "data") %>% check_equal(incorrect_msg="Don't forget to set `data = Fingers`")
check_arg(., "object") %>% check_equal(incorrect_msg = "Did you use `~ RaceEthnic`?")
}
CK Code: ch3-25
require(coursekata)
# Add arguments color and fill to these bar graphs
# Make sure to add color and fill to both of the graphs
gf_bar(~ Sex, data = Fingers)
gf_bar(~ RaceEthnic, data = Fingers)
# the colors below are just examples. Any color is acceptable as long as you use the color and fill arguments
gf_bar(~ Sex, data = Fingers, color="darkgray", fill="mistyrose" )
gf_bar(~ RaceEthnic, data = Fingers, color="darkgray", fill="mistyrose")
ex() %>% {
check_function(., "gf_bar", index = 1) %>% {
check_arg(., "color")
check_arg(., "fill")
}
check_function(., "gf_bar", index = 2) %>% {
check_arg(., "color")
check_arg(., "fill")
}
}
CK Code: ch3-26
require(coursekata)
# This creates a frequency table of Sex
# Do not change this code
tally(~ Sex, data = Fingers)
# Write code to create a frequency table of RaceEthnic
tally(~ Sex, data = Fingers)
tally(~ RaceEthnic, data = Fingers)
ex() %>% check_function(., "tally", index = 2) %>% check_result() %>% check_equal()
success_msg("You're a supe-R coder!")
CK Code: ch3-27
require(coursekata)
# Add margin and format arguments to the tally() function. Set margins to TRUE and format to proportion
tally(~ RaceEthnic, data = Fingers)
tally(~ RaceEthnic, data = Fingers, margins = TRUE, format = "proportion")
ex() %>% check_or(
check_function(., "tally") %>% {
check_arg(., "margins") %>% check_equal()
check_arg(., "format") %>% check_equal()
check_result(.) %>% check_equal()
},
check_output_expr(., 'tally(~ RaceEthnic, data = Fingers, margins = TRUE, format = "proportion")')
)
CK Code: ch3-28
require(coursekata)
# write code to create a frequency table of Thumb
tally(~Thumb, data = Fingers)
ex() %>% check_function("tally") %>% {
check_arg(., "x") %>% check_equal()
check_arg(., "data") %>% check_equal()
check_result(.) %>% check_equal()
}
CK Code: ch3-29
require(coursekata)
# run your code here
CK Code: A3_Code_Review2_01
require(coursekata)
# run your code here
CK Code: A3_Code_Review2_02
require(coursekata)
# run your code here
CK Code: A3_Code_Review2_03
require(coursekata)
# run your code here
CK Code: A3_Code_Review2_04
require(coursekata)
# run your code here
CK Code: A3_Code_Review2_05
require(coursekata)
# run your code here
CK Code: A3_Code_Review2_06
require(coursekata)
# run your code here
CK Code: A3_Code_Review2_07
require(coursekata)
# run your code here
CK Code: A3_Code_Review2_08
require(coursekata)
# run your code here
CK Code: A3_Code_Review2_09
require(coursekata)
# run your code here
CK Code: A3_Code_Review2_10
require(coursekata)
# run your code here
CK Code: A3_Code_Review2_11