Course Outline

list Items Test Book

Book
  • Items Test Book

ckcode ⌲ chapter-b2-quantifying-error

require(coursekata) empty_model <- lm(Thumb ~ NULL, data = Fingers) Fingers <- Fingers %>% mutate( Predict = predict(empty_model), Resid = resid(empty_model) ) # try running this code # then modify it to sum up the absolute values of the residuals abs(Fingers$Resid) sum(abs(Fingers$Resid)) ex() %>% { check_function(., "sum") %>% check_result() %>% check_equal() }
CK Code: B2_Code_Quantifying_01
require(coursekata) empty_model <- lm(Thumb ~ NULL, data = Fingers) Fingers <- Fingers %>% mutate( Predict = predict(empty_model), Resid = resid(empty_model) ) # try running this code # then modify it to sum up the squared residuals Fingers$Resid^2 sum(Fingers$Resid^2) ex() %>% { check_function(., "sum") %>% check_result() %>% check_equal() }
CK Code: B2_Code_Quantifying_02
require(coursekata) # this sets the model at a particular value model <- 60.1 # this calculates the sum of squares from the model sum((Fingers$Thumb - model)^2) # this sets the model at a particular value model <- 60.1 # this calculates the sum of squares from the model sum((Fingers$Thumb - model)^2) ex() %>% check_error()
CK Code: B2_Code_Sum_01
require(coursekata) # create an empty model of Thumb length from Fingers empty_model <- # analyze the model with supernova() to get the SS supernova() empty_model <- lm(Thumb ~ NULL, data = Fingers) supernova(empty_model) ex() %>% { check_object(., "empty_model") %>% check_equal() check_output_expr(., "supernova(empty_model)") }
CK Code: B2_Code_Sum_02
require(coursekata) empty_model <- lm(Thumb ~ NULL, data = Fingers) # this creates the empty_model empty_model <- lm(Thumb ~ NULL, data = Fingers) # calculate the variance of Thumb from the Fingers data frame var() # use supernova() on the empty_model to calculate variance supernova() var(Fingers$Thumb) supernova(empty_model) ex() %>% check_function("var") %>% check_result() %>% check_equal() ex() %>% check_function("supernova") %>% check_result() %>% check_equal()
CK Code: B2_Code_Variance_01
require(coursekata) empty_model <- lm(Thumb ~ NULL, data = Fingers) # calculate the standard deviation of Thumb from Fingers with sd() # calculate the standard deviation with sqrt() and var() # calculate the standard deviation with favstats() sd(Fingers$Thumb) sqrt(var(Fingers$Thumb)) favstats(~Thumb, data = Fingers) ex() %>% { check_function(., "sd") %>% check_result() %>% check_equal() check_function(., "sqrt") %>% check_result() %>% check_equal() check_function(., "favstats") %>% check_result() %>% check_equal() }
CK Code: B2_Code_Standard_01
require(coursekata) MindsetMatters$PoundsLost <- MindsetMatters$Wt - MindsetMatters$Wt2 # create an empty model of PoundsLost from MindsetMatters empty_model <- # find SS, var, and sd # there are multiple correct solutions empty_model <- lm(PoundsLost ~ NULL, data = MindsetMatters) sum(resid(empty_model)^2) var(MindsetMatters$PoundsLost) sd(MindsetMatters$PoundsLost) ex() %>% { check_object(., "empty_model") %>% check_equal() check_output(., 556.7) check_output(., 7.52) check_output(., 2.74) }
CK Code: B2_Code_Standard_02
require(coursekata) # z-score if distribution 1 were true (37000 - 35000)/1000 # z-score if distribution 2 were true (37000 - 35000)/1000 (37000 - 35000)/5000 ex() %>% { check_output_expr(., "(37000 - 35000)/1000") check_output_expr(., "(37000 - 35000)/5000", missing_msg="Did you divide by the sd of the second distribution?") }
CK Code: B2_Code_Z_01
require(coursekata) # this saves the mean and standard deviation of Thumb mean <- mean(Fingers$Thumb) sd <- sd(Fingers$Thumb) # write code to calculate the z-score for a 65.1 mm Thumb mean <- mean(Fingers$Thumb) sd <- sd(Fingers$Thumb) (65.1 - mean) / sd ex() %>% { check_output_expr(., "(65.1 - mean) / sd") }
CK Code: B2_Code_Using_01
require(coursekata) # do not remove setup code here even though sample_1 isn't used! # it is important to call set.seed(1) and rnorm both times so that the tally matches the figures in the text set.seed(1) sample_1 <- data.frame( outcome = rnorm(500, 100, 4), explanatory = rep(1, 100) ) sample_2 <- data.frame( outcome = rnorm(500, 100, 12), explanatory = rep(2, 100) ) sample_2$greater_than_110 <- sample_2$outcome > 110 # get a tally of greater_than_110 in sample_2 tally() # get the tally in proportions tally() tally(~greater_than_110, data = sample_2) tally(~greater_than_110, data = sample_2, format = "proportion") ex() %>% { check_function(., "tally", index = 1) %>% check_result() %>% check_equal() check_function(., "tally", index = 2) %>% check_result() %>% check_equal() }
CK Code: B2_Code_Modeling_01
require(coursekata) # modify this to create a boolean variable that records whether a Thumb is greater than 65.1 Fingers$GreaterThan65.1 <- # modify this to find the proportion of GreaterThan65.1 tally(~ , data = , format = "proportion") Fingers$GreaterThan65.1 <- Fingers$Thumb > 65.1 tally(~GreaterThan65.1, data = Fingers, format = "proportion") ex() %>% { check_object(., "Fingers") %>% check_column("GreaterThan65.1") %>% check_equal() check_function(., "tally") %>% check_result() %>% check_equal() }
CK Code: B2_Code_Modeling_02
require(coursekata) set.seed(1) # this resamples numbers -3 to 3, 1000 times var1 <- resample(-3:3, 1000) # put var1 into a data frame called somedata somedata <- var1 <- resample(-3:3, 1000) somedata <- data.frame(var1) ex() %>% check_object("somedata") %>% check_equal()
CK Code: B2_Code_ErrorNormal_01
require(coursekata) set.seed(2) somedata <- data.frame(var1 = resample(-3:3, 1000)) # Create a histogram of var1 from somedata # Create a histogram of var1 from somedata gf_histogram(~ var1, data = somedata) ex() %>% check_or(., check_function(., "gf_histogram") %>% { check_arg(., "object") %>% check_equal() check_arg(., "data") %>% check_equal() }, override_solution(., "gf_histogram(somedata, ~var1)") %>% check_function("gf_histogram") %>% { check_arg(., "object") %>% check_equal() check_arg(., "gformula") %>% check_equal() }, override_solution(., "gf_histogram(~somedata$var1)") %>% check_function("gf_histogram") %>% check_arg("object") %>% check_equal() )
CK Code: B2_Code_ErrorNormal_02
require(coursekata) set.seed(2) somedata <- 1:10 %>% purrr::set_names(paste0("var", 1:10)) %>% purrr::map_df(~resample(-3:3, 1000)) # write code to print out a few lines of somedata # write code to create individual histograms # the first one (var1) has been written for you gf_histogram(~ var1, fill = "red", data = somedata) # write code to print out a few lines of somedata head(somedata) # write code to create individual histograms # the first one (var1) has been written for you gf_histogram(~var1, fill = "red", data = somedata) # colors, if any, do not affect scoring gf_histogram(~var2, data = somedata) gf_histogram(~var3, data = somedata) gf_histogram(~var4, data = somedata) gf_histogram(~var5, data = somedata) gf_histogram(~var6, data = somedata) gf_histogram(~var7, data = somedata) gf_histogram(~var8, data = somedata) gf_histogram(~var9, data = somedata) gf_histogram(~var10, data = somedata) ex() %>% { check_function(., "head") %>% check_arg("x") %>% check_equal() check_function(., "gf_histogram", index = 1) %>% check_arg("object") %>% check_equal() check_function(., "gf_histogram", index = 2) %>% check_arg("object") %>% check_equal() check_function(., "gf_histogram", index = 3) %>% check_arg("object") %>% check_equal() check_function(., "gf_histogram", index = 4) %>% check_arg("object") %>% check_equal() check_function(., "gf_histogram", index = 5) %>% check_arg("object") %>% check_equal() check_function(., "gf_histogram", index = 6) %>% check_arg("object") %>% check_equal() check_function(., "gf_histogram", index = 7) %>% check_arg("object") %>% check_equal() check_function(., "gf_histogram", index = 8) %>% check_arg("object") %>% check_equal() check_function(., "gf_histogram", index = 9) %>% check_arg("object") %>% check_equal() check_function(., "gf_histogram", index = 10) %>% check_arg("object") %>% check_equal() }
CK Code: B2_Code_ErrorNormal_03
require(coursekata) set.seed(2) somedata <- 1:10 %>% purrr::set_names(paste0("var", 1:10)) %>% purrr::map_df(~resample(-3:3, 1000)) # run this code summary(somedata) summary(somedata) ex() %>% check_function("summary") %>% check_result() %>% check_equal() success_msg("Fantastic! On to the next challenge")
CK Code: B2_Code_ErrorNormal_04
require(coursekata) set.seed(2) somedata <- 1:10 %>% purrr::set_names(paste0("var", 1:10)) %>% purrr::map_df(~resample(-3:3, 1000)) # save the total of the 10 variables to the total column in somedata # (HINT: The sum function won't work in this case) somedata$total <- # this will make a density histogram of the totals gf_dhistogram(~total, data = somedata, fill = "black") # save the total of the 10 variables to the total column somedata$total <- somedata$var1 + somedata$var2 + somedata$var3 + somedata$var4 + somedata$var5 + somedata$var6 + somedata$var7 + somedata$var8 + somedata$var9 + somedata$var10 # this will make a density histogram of the totals gf_dhistogram(~total, data = somedata) ex() %>% { check_object(., "somedata") %>% check_column("total") %>% check_equal() check_or(., check_function(., "gf_dhistogram") %>% { check_arg(., "object") %>% check_equal() check_arg(., "data") %>% check_equal() }, override_solution(., "somedata$total <- rowSums(somedata); gf_dhistogram(somedata, ~total)") %>% check_function("gf_dhistogram") %>% { # check_arg(., "object") %>% check_equal() # weird bug here... check_arg(., "gformula") %>% check_equal() }, override_solution(., "somedata$total <- rowSums(somedata); gf_dhistogram(~somedata$total)") %>% check_function("gf_dhistogram") %>% check_arg("object") %>% check_equal() ) }
CK Code: B2_Code_ErrorNormal_05
require(coursekata) set.seed(2) somedata <- 1:10 %>% purrr::set_names(paste0("var", 1:10)) %>% purrr::map_df(~resample(-3:3, 1000)) %>% mutate(total = var1 + var2 + var3 + var4 + var5 + var6 + var7 + var8 + var9 + var10) # try changing the bin number to be smaller than 30 gf_dhistogram(~ total, data = somedata, fill = "black", bins = 30) # try changing the bin number to be larger than 30 gf_dhistogram(~ total, data = somedata, fill = "black", bins = 30) # try changing the bin number to be smaller than 30 gf_dhistogram(~ total, data = somedata, fill = "black", bins = 10) # try changing the bin number to be larger than 30 gf_dhistogram(~ total, data = somedata, fill = "black", bins = 75) ex() %>% check_error()
CK Code: B2_Code_ErrorNormal_06
require(coursekata) # try running this code xpnorm(65.1, mean(Fingers$Thumb), sd(Fingers$Thumb)) xpnorm(65.1, mean(Fingers$Thumb), sd(Fingers$Thumb))ex() %>% check_error()
CK Code: B2_Code_UsingNormal_01
require(coursekata) simulate_scores <- function(game, n, mean, sd) { scores <- rnorm(n, mean, sd) z <- (scores - mean) / sd interval <- ifelse(z > 0, trunc(1 + z), trunc(z - 1)) data.frame(game = game, scores = scores, z = z, interval = interval, zone = abs(interval)) } compare_score_distributions <- function(sd = 3500, mean = 35000, n = 1000, ..., .seed = 5) { set.seed(.seed) kargle <- simulate_scores("Kargle", 1000, 35000, 5000) bargle <- simulate_scores("Bargle", 1000, 35000, 1000) zargle <- simulate_scores("Zargle", n, mean, sd) games <- vctrs::vec_c(kargle, bargle, zargle) # combine all zones > 3 into a single "outside 3" zone games$zone <- ifelse(games$zone > 3, "outside 3", games$zone) # convert the proportions to cumulative proportions for all except "outside 3" props <- data.frame(tally(zone ~ game, data = games, format = "proportion")) props <- purrr::map_dfr(split(props, props$game), function(x) { x$Freq <- c(cumsum(x$Freq[1:3]), x$Freq[4]) x }) # re-format the table to be wide (one column per game) zone_table <- tidyr::pivot_wider(props, names_from = game, values_from = Freq) gf_histogram(~scores, fill = ~zone, data = games, bins = 160, alpha = .8) %>% gf_facet_grid(game ~ .) %>% print() data.frame(zone_table) } # change the standard deviation to whatever you'd like it to be # try to break the empirical rule! compare_score_distributions(sd = 3500, mean = 35000, n = 1000) ex() %>% check_error()
CK Code: B2_Code_Empirical_01
require(coursekata) # run your code here
CK Code: B2_Code_Review2_01
require(coursekata) # run your code here
CK Code: B2_Code_Review2_02
require(coursekata) # run your code here
CK Code: B2_Code_Review2_03

Responses