Course Outline
-
segmentLearnosity
-
segmentCKCode
-
ckcode-chapter-d4-more-models-with-interactions
list Items Test Book
Book
ckcode ⌲ chapter-d4-more-models-with-interactions
require(coursekata)
# add color to see how YearBuilt relates to this data
gf_point(PriceK ~ HomeSizeK, data = Ames)
# add color to see how YearBuilt relates to this data
gf_point(PriceK ~ HomeSizeK, data = Ames, color = ~YearBuilt)
ex() %>% check_function("gf_point") %>% {
check_arg(., "object") %>% check_equal()
check_arg(., "data") %>% check_equal()
check_arg(., "color") %>% check_equal()
}
CK Code: D4_Code_TwoPred_01
require(coursekata)
# fit and save the interaction model
interaction_model <-
# add the model to this scatterplot
gf_point(PriceK ~ HomeSizeK, data = Ames, color = ~YearBuilt)
# fit and save the interaction model
interaction_model <- lm(PriceK ~ YearBuilt*HomeSizeK, data = Ames)
# add the model to this scatterplot
gf_point(PriceK ~ HomeSizeK, data = Ames, color = ~YearBuilt) %>%
gf_model(interaction_model)
ex() %>% check_function("gf_model") %>% {
check_arg(., "object") %>% check_equal()
check_arg(., "model") %>% check_equal()
}
CK Code: D4_Code_Fitting_01
require(coursekata)
# find the best-fitting parameter estimates for the interaction model
# find the best-fitting parameter estimates for the interaction model
lm(PriceK ~ YearBuilt * HomeSizeK, data = Ames)
# or alternatively: lm(PriceK ~ HomeSizeK * YearBuilt, data = Ames)
ex() %>% check_or(
check_function(., "lm") %>%
check_result() %>%
check_equal(),
override_solution(., "lm(PriceK ~ HomeSizeK * YearBuilt, data = Ames)") %>%
check_function("lm") %>%
check_result() %>%
check_equal()
)
CK Code: D4_Code_Interpreting_01
require(coursekata)
# generate the ANOVA table for the interaction model
# (no models have been pre-saved for you)
# generate the ANOVA table for the interaction model
# (no models have been pre-saved for you)
supernova(lm(PriceK ~ YearBuilt * HomeSizeK, data = Ames))
# or alternatively: supernova(lm(PriceK ~ HomeSizeK * YearBuilt, data = Ames))
ex() %>% check_or(
check_function(., "supernova") %>%
check_result() %>%
check_equal(),
override_solution(., "supernova(lm(PriceK ~ HomeSizeK * YearBuilt, data = Ames))") %>%
check_function("supernova") %>%
check_result() %>%
check_equal()
)
CK Code: D4_Code_Comparing_01
require(coursekata)
# run this first before modifying
gf_jitter(tip_percent ~ condition, data = tip_exp, width = .1, color = ~gender)
# run this first before modifying
gf_jitter(tip_percent ~ condition, data = tip_exp, width = .1, color = ~gender) %>%
gf_facet_grid(. ~ gender)
ex() %>% check_function("gf_facet_grid") %>% {
check_arg(., "object") %>% check_equal()
check_arg(., 2) %>% check_equal()
}
CK Code: D4_Code_Interactions_01
require(coursekata)
# fit and save the interaction model
interaction_model <-
# add code to put the interaction model on this plot
gf_jitter(tip_percent ~ condition, data = tip_exp, width = .1, color = ~gender) %>%
gf_facet_grid(. ~ gender)
# fit and save the interaction model
interaction_model <- lm(tip_percent ~ condition * gender, data = tip_exp)
# add code to put the interaction model on this plot
gf_jitter(tip_percent ~ condition, data = tip_exp, width = .1, color = ~gender) %>%
gf_facet_grid(. ~ gender) %>%
gf_model(interaction_model)
ex() %>% check_or(
check_function(., "gf_model") %>%
check_arg("model") %>%
check_equal(),
override_solution(., "gf_jitter(tip_percent ~ condition, data = tip_exp, width = .1, color = ~gender) %>% gf_facet_grid(. ~ gender) %>% gf_model(lm(tip_percent ~ gender * condition, data = tip_exp))") %>%
check_function("gf_model") %>%
check_arg("model") %>%
check_equal()
)
CK Code: D4_Code_Interactions_02
require(coursekata)
# nothing has been saved for you
# the data frame is called tip_exp
# nothing has been saved for you
# the data frame is called tip_exp
lm(tip_percent ~ condition * gender, data = tip_exp)
# alternatively: lm(tip_percent ~ gender * condition, data = tip_exp)
ex() %>% check_or(
check_function(., "lm") %>%
check_result() %>%
check_equal(),
override_solution(., "lm(tip_percent ~ gender * condition, data = tip_exp)") %>%
check_function("lm") %>%
check_result() %>%
check_equal()
)
CK Code: D4_Code_Predictions_01
require(coursekata)
# no models have been created for you
# generate the ANOVA table for the interaction model (remember to use verbose=FALSE)
# no models have been created for you
# generate the ANOVA table for the interaction model (remember to use verbose=FALSE)
supernova(lm(tip_percent ~ condition * gender, data = tip_exp), verbose = FALSE)
# alternatively: supernova(lm(tip_percent ~ gender * condition, data = tip_exp), verbose = FALSE)
ex() %>% check_or(
check_function(., "supernova") %>%
check_result() %>%
check_equal(),
override_solution(., "supernova(lm(tip_percent ~ gender * condition, data = tip_exp), verbose = FALSE)") %>%
check_function("supernova") %>%
check_result() %>%
check_equal()
)
CK Code: D4_Code_Factorial_01